7 research outputs found

    Noncontact imaging photoplethysmography to effectively access pulse rate variability

    Get PDF
    Noncontact imaging photoplethysmography (PPG) can provide physiological assessment at various anatomical locations with no discomfort to the patient. However, most previous imaging PPG (iPPG) systems have been limited by a low sample frequency, which restricts their use clinically, for instance, in the assessment of pulse rate variability (PRV). In the present study, plethysmographic signals are remotely captured via an iPPG system at a rate of 200 fps. The physiological parameters (i.e., heart and respiration rate and PRV) derived from the iPPG datasets yield statistically comparable results to those acquired using a contact PPG sensor, the gold standard. More importantly, we present evidence that the negative influence of initial low sample frequency could be compensated via interpolation to improve the time domain resolution. We thereby provide further strong support for the low-cost webcam-based iPPG technique and, importantly, open up a new avenue for effective noncontact assessment of multiple physiological parameters, with potential applications in the evaluation of cardiac autonomic activity and remote sensing of vital physiological signs

    Comparison of scientific CMOS camera and webcam for monitoring cardiac pulse after exercise

    Get PDF
    In light of its capacity for remote physiological assessment over a wide range of anatomical locations, imaging photoplethysmography has become an attractive research area in biomedical and clinical community. Amongst recent iPPG studies, two separate research directions have been revealed, i.e., scientific camera based imaging PPG (iPPG) and webcam based imaging PPG (wPPG). Little is known about the difference between these two techniques. To address this issue, a dual-channel imaging PPG system (iPPG and wPPG) using ambient light as the illumination source has been introduced in this study. The performance of the two imaging PPG techniques was evaluated through the measurement of cardiac pulse acquired from the face of 10 male subjects before and after 10 min of cycling exercise. A time-frequency representation method was used to visualize the time-dependent behaviour of the heart rate. In comparison to the gold standard contact PPG, both imaging PPG techniques exhibit comparable functional characteristics in the context of cardiac pulse assessment. Moreover, the synchronized ambient light intensity recordings in the present study can provide additional information for appraising the performance of the imaging PPG systems. This feasibility study thereby leads to a new route for non-contact monitoring of vital signs, with clear applications in triage and homecare

    Use of ambient light in remote photoplethysmographic systems: comparison between a high-performance camera and a low-cost webcam

    Get PDF
    Imaging photoplethysmography (PPG) is able to capture useful physiological data remotely from a wide range of anatomical locations. Recent imaging PPG studies have concentrated on two broad research directions involving either high-performance cameras and or webcam-based systems. However, little has been reported about the difference between these two techniques, particularly in terms of their performance under illumination with ambient light. We explore these two imaging PPG approaches through the simultaneous measurement of the cardiac pulse acquired from the face of 10 male subjects and the spectral characteristics of ambient light. Measurements are made before and after a period of cycling exercise. The physiological pulse waves extracted from both imaging PPG systems using the smoothed pseudo-Wigner-Ville distribution yield functional characteristics comparable to those acquired using gold standard contact PPG sensors. The influence of ambient light intensity on the physiological information is considered, where results reveal an independent relationship between the ambient light intensity and the normalized plethysmographic signals. This provides further support for imaging PPG as a means for practical noncontact physiological assessment with clear applications in several domains, including telemedicine and homecare

    Motion-compensated noncontact imaging photoplethysmography to monitor cardiorespiratory status during exercise

    Get PDF
    With the advance of computer and photonics technology, imaging photoplethysmography [(PPG), iPPG] can provide comfortable and comprehensive assessment over a wide range of anatomical locations. However, motion artifact is a major drawback in current iPPG systems, particularly in the context of clinical assessment. To overcome this issue, a new artifact-reduction method consisting of planar motion compensation and blind source separation is introduced in this study. The performance of the iPPG system was evaluated through the measurement of cardiac pulse in the hand from 12 subjects before and after 5 min of cycling exercise. Also, a 12-min continuous recording protocol consisting of repeated exercises was taken from a single volunteer. The physiological parameters (i.e., heart rate, respiration rate), derived from the images captured by the iPPG system, exhibit functional characteristics comparable to conventional contact PPG sensors. Continuous recordings from the iPPG system reveal that heart and respiration rates can be successfully tracked with the artifact reduction method even in high-intensity physical exercise situations. The outcome from this study thereby leads to a new avenue for noncontact sensing of vital signs and remote physiological assessment, with clear applications in triage and sports training

    Detection of physiological changes after exercise via a remote optophysiological imaging system

    Get PDF
    A study of blood perfusion mapping was performed with a remote opto-physiological imaging (OPI) system coupling a sensitive CMOS camera and a custom-built resonant cavity light emitting diode (RCLED) ringlight. The setup is suitable for the remote assessment of blood perfusion in tissue over a wide range of anatomical locations. The purpose of this study is to evaluate the reliability and stability of the OPI system when measuring a cardiovascular variable of clinical interest, in this case, heart rate. To this end, the non-contact and contact photoplethysmographic (PPG) signals obtained from the OPI system and conventional PPG sensor were recorded simultaneously from each of 12 subjects before and after 5-min of cycling exercise. The time-frequency representation (TFR) method was used to visualize the timedependent behavior of the signal frequency. The physiological parameters derived from the images captured by the OPI system exhibit comparable functional characteristics to those taken from conventional contact PPG pulse waveform measurements in both the time and frequency domains. Finally and more importantly, a previously developed optophysiological model was employed to provide a 3-D representation of blood perfusion in human tissue which could provide a new insight into clinical assessment and diagnosis of circulatory pathology in various tissue segments

    Comparison of scientific CMOS camera and webcam for monitoring cardiac pulse after exercise

    Get PDF
    In light of its capacity for remote physiological assessment over a wide range of anatomical locations, imaging photoplethysmography has become an attractive research area in biomedical and clinical community. Amongst recent iPPG studies, two separate research directions have been revealed, i.e., scientific camera based imaging PPG (iPPG) and webcam based imaging PPG (wPPG). Little is known about the difference between these two techniques. To address this issue, a dual-channel imaging PPG system (iPPG and wPPG) using ambient light as the illumination source has been introduced in this study. The performance of the two imaging PPG techniques was evaluated through the measurement of cardiac pulse acquired from the face of 10 male subjects before and after 10 min of cycling exercise. A time-frequency representation method was used to visualize the time-dependent behaviour of the heart rate. In comparison to the gold standard contact PPG, both imaging PPG techniques exhibit comparable functional characteristics in the context of cardiac pulse assessment. Moreover, the synchronized ambient light intensity recordings in the present study can provide additional information for appraising the performance of the imaging PPG systems. This feasibility study thereby leads to a new route for non-contact monitoring of vital signs, with clear applications in triage and homecare

    Detection of physiological changes after exercise via a remote optophysiological imaging system

    No full text
    A study of blood perfusion mapping was performed with a remote opto-physiological imaging (OPI) system coupling a sensitive CMOS camera and a custom-built resonant cavity light emitting diode (RCLED) ringlight. The setup is suitable for the remote assessment of blood perfusion in tissue over a wide range of anatomical locations. The purpose of this study is to evaluate the reliability and stability of the OPI system when measuring a cardiovascular variable of clinical interest, in this case, heart rate. To this end, the non-contact and contact photoplethysmographic (PPG) signals obtained from the OPI system and conventional PPG sensor were recorded simultaneously from each of 12 subjects before and after 5-min of cycling exercise. The time-frequency representation (TFR) method was used to visualize the timedependent behavior of the signal frequency. The physiological parameters derived from the images captured by the OPI system exhibit comparable functional characteristics to those taken from conventional contact PPG pulse waveform measurements in both the time and frequency domains. Finally and more importantly, a previously developed optophysiological model was employed to provide a 3-D representation of blood perfusion in human tissue which could provide a new insight into clinical assessment and diagnosis of circulatory pathology in various tissue segments
    corecore